Genes encoding candidate pheromone receptors in a moth (Heliothis virescens).

نویسندگان

  • J Krieger
  • E Grosse-Wilde
  • T Gohl
  • Y M E Dewer
  • K Raming
  • H Breer
چکیده

The remarkable responsiveness of male moths to female released pheromones is based on the extremely sensitive and selective reaction of highly specialized sensory cells in the male antennae. These cells are supposed to be equipped with male-specific receptors for pheromonal compounds, however, the nature of these receptors is still elusive. By using a combination of genomic sequence analysis and cDNA-library screening, we have cloned various cDNAs of the tobacco budworm Heliothis virescens encoding candidate olfactory receptors. A comparison of all identified receptor types not only highlighted their overall high degree of sequence diversity but also led to the identification of a small group of receptors sharing >40% identity. In RT-PCR analysis it was found that distinct members of this group were expressed exclusively in the antennae of male moths. In situ hybridization experiments revealed that the male-specific expression of these receptor types was confined to antennal cells located beneath sensillar hair structures (sensilla triochoidea), which have been shown to contain pheromone-sensitive neurons. Moreover, two-color double in situ-hybridization approaches uncovered that cells expressing one of these receptor types were surrounded by cells expressing pheromone-binding proteins, as expected for a pheromone-sensitive sensillum. These findings suggest that receptors like Heliothis receptor 14-16 (HR14-HR16) may render antennal cells responsive to pheromones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moth pheromone receptors: gene sequences, function, and evolution

The detection of female-released species-specific sex pheromones in moths is mediated by the pheromone receptors that are expressed in the sensory neurons in the olfactory sensilla of conspecific male antennae. Since the pioneering studies on the tobacco budworm Heliothis virescens and the silkworm Bombyx mori a decade ago, genes encoding pheromone receptors have been identified from a number o...

متن کامل

Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens.

Functional analyses of candidate Heliothis virescens pheromone odorant receptors (HvORs) were conducted using heterologous expression in Xenopus oocytes. HvOR6 was found to be highly tuned to Z9-14:Ald, while HvOR13, HvOR14 and HvOR16 showed specificity for Z11-16:Ald, Z11-16:OAc and Z11-16:OH, respectively. HvOR15, which had been considered a candidate receptor for Z9-14:Ald did not respond to...

متن کامل

HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens.

The highly specific recognition of female-released sex pheromones in insects by sensory neurons of the male antenna requires specific receptors. Recently, a small family of related candidate pheromone receptors has been identified for a few moth species. In this study, the candidate pheromone receptor HR11 from Heliothis virescens has been characterized. HR11 was found to be expressed in numero...

متن کامل

Nearest neural neighbors: moth sex pheromone receptors HR11 and HR13.

In moth sex pheromone olfaction systems, there is a stereotypical co-compartmentalization of two or sometimes three olfactory receptor neurons (ORNs) within single trichoid sensilla on which pheromone-sensitive odorant receptors (ORs) are differentially expressed. In this issue of Chemical Senses, Krieger et al. show through elegant double and triple in situ hybridization studies that in the mo...

متن کامل

QTL analysis of sex pheromone blend differences between two closely related moths: Insights into divergence in biosynthetic pathways.

To understand the evolution of premating signals in moths, it is important to know the genetic basis of these signals. We conducted Quantitative Trait Locus (QTL) analysis by hybridizing two noctuid moth species, Heliothis virescens (Hv) and Heliothis subflexa (Hs), and backcrossing the F(1) females to males of both parental species. One of these backcrosses (F(1) x Hs) was a biological replica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 32  شماره 

صفحات  -

تاریخ انتشار 2004